

Original Article

HYPOTENSION AFTER STREPTOKINASE THERAPY IN PATIENTS PRESENTING WITH ACUTE MYOCARDIAL INFARCTION

Moazzam Ali Naqvi^a, Imran Waheed^{b*}, Adeel Tahir^a, Muhammad Zubair Tariq^a

ABSTRACT

INTRODUCTION: Streptokinase is the most often used fibrinolytic agent in Pakistan for patients with acute myocardial infarction. However, many side effects including hypotension have been reported. The aim of this study was to determine the frequency of hypotension after intravenous streptokinase in patients presenting with acute ST Elevation myocardial infarction (STEMI).

MATERIAL AND METHODS: This was a Descriptive case series study which was done in Emergency Department of Cardiology Ward, Punjab Institute of Cardiology, Lahore from January 2017 to July 2017. Two hundred patients with STEMI were enrolled and were given streptokinase as 1.5 mega-units diluted in 100mls of Normal Saline infused over 60 minutes. After 60 minutes of infusion, patients were assessed for hypotension.

RESULTS: The mean age of patients was 52.86 ± 10.07 years. There were 135 (67.5%) males and 65 (32.5%) females. The mean duration of chest pain was 5.64 ± 3.40 hours. In this study, 114 (57.0%) patients developed hypotension.

CONCLUSION: The frequency of hypotension is high in patients with acute ST Elevation myocardial infarction given streptokinase (SK). So, special attention should be given to patients given SK after AMI to prevent hypotension.

KEY WORDS: Hypotension, Acute Myocardial Infarction (AMI), Streptokinase(SK).

INTRODUCTION

Acute myocardial infarction (AMI) is one of the leading causes of death, especially, in the elderly. However, clinical data reveals a disproportionately lower use of thrombolytic agents because of fear of complications like intracranial haemorrhage.¹ Streptokinase (SK) is one of the commonly used fibrinolytic agents and is widely used in thrombo-embolic conditions. It is cost-effective when compared with other thrombolytic drugs and is associated with shorter hospital stay.²

This medicine improves survival rate through clot resolution and reperfusion of jeopardized cardiac tissue. However, many side effects such

(J Cardiovasc Dis 2018;14(4):87 - 92)

as nausea, vomiting, hypotension, hypertension, phlebitis, localized tenderness, bleeding, arrhythmias and fever have been reported. Retroperitoneal hematoma has also been reported.³

Most cases of AMI are caused by coronary artery plaque rupture with subsequent thrombus formation. When thrombosis leads to total occlusion of blood flow, acute ST-elevation myocardial infarction (STEMI) is often the clinical outcome. Patients with acute STEMI should receive early reperfusion therapy and thrombolysis is one way. Reperfusion improves clinical outcomes in nearly all groups of patients with STEMI who present within 12 hours of symptom onset.⁴⁻⁶

Hypotension has been reported with use of streptokinase ranging from 1.6% to about 10%.⁷

⁸ One study reported that the frequency of hypotension was 44% in patients with AMI after SK infusion.⁹ But another study reported the frequency of hypotension was 62.9% in patients with AMI after SK infusion.¹⁰

The dissolution of thrombus and restoration of the patency of an infarct related artery results in improved blood supply of the heart besides preventing infarct expansion, ventricular remodeling, dilatation and malignant ventricular arrhythmias and high mortality.¹¹⁻¹³ Benefits of drug therapy

^aPunjab Institute of Cardiology , Lahore

^bDepartment of Cardiology, Khawaja Muhammad Safdar Medical College / Allama Iqbal Memorial Teaching Hospital Sialkot.

* Corresponding author:
Email:cardiovascularpic@gmail.com

with antianginal agents, Beta blockers, ACE inhibitors and anti-platelets have good impact on the prognosis along with streptokinase therapy.¹⁴ We conducted this study to determine the frequency of hypotension after intra-venous streptokinase in patients presenting with acute ST elevation myocardial infarction.

MATERIAL AND METHODS:

This descriptive case series was conducted in Emergency Department of Punjab Institute of Cardiology, Lahore from January 2017 to July 2017. A sample size of 200 cases was calculated with 95% confidence level, 7% margin of error and taking expected percentage of hypotension as 44% after SK in patients presenting with AMI. Non-Probability Consecutive Sampling technique was used. Patients of age ranging from 35 to 70 years from either gender presenting with Acute ST Elevation MI in emergency department within 12 hours of onset of symptoms were included in the study. Patients who were hypotensive on presentation, who had undergone previous CABG or PCI and those with cardiogenic shock were excluded from the study. Informed consent was obtained from all patients. Their demographic information (age, gender, duration of AMI) was also noted. Then patients were given SK as 1.5 mega-units diluted in 100 milliliters of Normal Saline infused over 60 minutes. After 60 minutes of infusion, patients were assessed for hypotension. Hypotension was defined as blood pressure lower than 90/60 mmHg.

The data thus collected was analysed statistically by using SPSS version 21. Quantitative variables like age, and duration of symptoms were presented in the form of mean \pm S.D. Qualitative variables like gender and hypotension were presented in the form of frequency and percentage. Data was stratified for age, gender, and history of diabetes. Post-stratification, chi-square was applied to compare frequency of hypotension in stratified groups. 'P' < 0.05 was taken as significant.

RESULTS:

Two hundred patients were studied. Mean age of the patients was 52.86 ± 10.07 years. There were 135 (67.5%) males and 65 (32.5%) females. The mean duration of chest pain was 5.64 ± 3.40 hours. There were 89 (44.5%) diabetics. In this study, 114 (57.0%) patients developed hypotension. (Fig-1) Data was stratified for age of patients. In patients aged 35-50 years, 54 (64.3%) developed hypotension. In patients aged 51-70 years, 60 (51.7%) developed hypotension while 56 (48.3%) had normal blood pressure. Table 2. Among male patients, 77

(57.0%) developed hypotension. Among female patients, 37 (56.9%) developed hypotension. The difference was insignificant ($p > 0.998$). Table 3.

Among diabetics, 49 (55.1%) developed hypotension. Among non-diabetics, 65 (58.6%) developed hypotension. The difference was insignificant ($p > 0.05$). Table 4

Data was stratified for duration of chest pain

Table 1: Descriptive Statistics of age and chest pain duration of patient

	Age (Years)	Duration of Chest Pain (hours)
n	200	200
Mean	52.86	5.64
SD	10.07	3.40
Minimum	35	1
Maximum	70	12

Table 2: Comparison of hypotension in age strata

		Age (years)		Total
		35-50	51-70	
Hypotension	Yes	54 (64.3%)	60 (51.7%)	114 (57.0%)
	No	30 (35.7%)	56 (48.3%)	86 (43.0%)
Total		84 (100%)	116 (100%)	200 (100%)

Chi-Square Test = 3.137, p-value = 0.077 (Insignificant)

Table 3: Comparison of hypotension in both genders

		Gender		Total
		Male	Female	
Hypotension	Yes	77 (57.0%)	37 (56.9%)	114 (57.0%)
	No	58 (43.0%)	28 (43.1%)	86 (43.0%)
Total		135 (100%)	65 (100%)	200 (100%)

Chi-Square Test = 0.000, p-value = 0.998 (Insignificant)

Table 4: Comparison of hypotension in h/o diabetes strata

		Diabetes		Total
		Yes	No	
Hypotension	Yes	49 (55.1%)	65 (58.6%)	114 (57.0%)
	No	40 (44.9%)	46 (41.4%)	86 (43.0%)
Total		89 (100%)	111 (100%)	200 (100%)

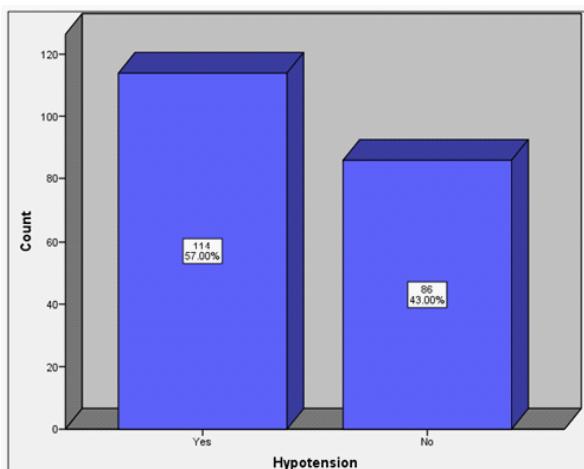

Chi-Square Test = 0.247, p-value = 0.619 (Insignificant)

Table 5: Comparison of hypotension in duration of symptoms

		Duration (hours)		Total
		1-6	7-12	
Hypotension	Yes	69 (53.9%)	45 (62.5%)	114 (57.0%)
	No	59 (46.1%)	27 (37.5%)	86 (43.0%)
Total		128 (100%)	72 (100%)	200 (100%)

Chi-Square Test = 1.388, p-value = 0.239 (Insignificant)

Fig 1: Distribution of hypotension

and frequency of hypotension as shown in Table 5. The difference was insignificant ($p>0.619$).

DISCUSSION:

We found that more than half of the patients having acute myocardial infarction and treated with Streptokinase developed hypotension. Thrombolytic therapy with Streptokinase is the most important and minimum standard of care for Acute Myocardial infarction patients.^{15,16} The management of Acute Myocardial Infarction has undergone revolutionary changes on account of the advent of latest interventional strategies of Primary PCI and its excellent outcomes during last 20 years. The hypotension caused by thrombolysis with SK is a well-known complication but usually it is well tolerated and easily manageable. The exact pathophysiology of this complication is yet to be elucidated. However, it does not bear any relationship to previous exposure with the drug.⁹

In America approximately 1.5 million cases of AMI occur every year. Contrary to the popular belief, the toll of AMI related deaths has not decreased in spite of emergence of new treatment modalities.¹⁷ Men are at higher risk as compared to women and black population more than Caucasians.¹⁸ Ischemic heart disease is the leading cause of death in Europe while in Russia the cardiovascular disease has remained the same over last two decades.¹⁹ The incidence of Ischemic heart disease and cardiovascular death is high in China due to risk factors like dyslipidemias and smoking.²⁰ Coronary Artery Disease incidence is likely to rise in Indian Subcontinent and Middle East by the year 2020.^{21,22} Canadian-led global study (INTERHEART) conducted in 52 countries across Africa, Asia, Australia, Europe, the Middle

East, and North and South America, has defined 9 risk factors (smoking, abnormal blood lipid levels, hypertension, diabetes, obesity, diet, physical activity, alcohol consumption, and psychosocial factors) that account for over 90% of the risk for acute MI.²³ Investigators of this group also say that all forms of tobacco, including filtered and non-filtered cigarettes, pipes and cigars, and chewing tobacco, are dangerous. Moreover abdominal obesity is a higher risk factor than BMI alone and waist-to-hip ratio is a better indicator as compared to BMI for obesity.²²⁻²⁴

Occlusion of arterial supply of the heart and oxygen deprivation of the myocardium can damage the cardiac muscle within half an hour to 40 minutes and if this condition persists and not treated swiftly it can lead to irreversible damage to the myocardium.²⁵ Ventricular remodeling is an irreversible phenomenon but if recommended treatment modalities are instituted timely during management of AMI this process can be slowed down and severity can be reduced significantly.²⁶ Nitric oxide is a well-known endothelium derived relaxing factor which exerts its action against reperfusion injury by inactivating oxygen free radicals and reducing the process of damage to already overtaxed myocardium.²⁷

There is loss of certain metabolic agents needed for normal function and contraction of the myocardium such as Adenosine Triphosphate which can lead to both myocardial stunning and hibernation.²⁸ An atheromatous plaque which consists of a necrotic central core separated from the arterial lumen by a thin cap of fibrous tissue which is infiltrated with inflammatory cells is vulnerable to rupture and can cause AMI.^{29,30} There is a difference in the pathophysiology of AMI in young and elderly patients.³¹

Treatment of AMI with timely mechanical intervention (primary PCI) or pharmacologic reperfusion with SK is mandatory within 12 hours of symptom onset and for those who have persistent ST-segment elevation or new or presumed new left bundle branch block. Thrombolysis is an essential reperfusion therapy especially in non PCI capable centers. The efficacy of thrombolytic therapy with SK in patients with STEMI is well established.^{32,33}

Streptokinase therapy may be complicated by hemorrhagic CVA and it is more common in elderly patients, those who are hypertensive at admission, those who are thin framed and among women.³⁴ Adjuvant anticoagulation treatment with unfractionated heparin and many other available

agents is important for adequate reperfusion therapy irrespective of the treatment modality chosen i.e. Primary PCI or Thrombolysis.³⁵ The use of Unfractionated heparin or low molecular weight heparin (enoxaparin) is preferred.³⁶ Those patients who have Heparin induced Thrombocytopenia and need anticoagulation Bivalirudin is the choice.³⁷ A referral to a tertiary care center with all facilities of post MI rehabilitation and care should be considered in all patients for cardiac rehabilitation and exercise program after AMI. Regular exercise for at least 30 minutes for at least three days a week is

recommended for Post AMI patients.³⁸

Qureshi et al 1 reported post SK fall in blood pressure in 33% patients while in another study this frequency was 44.55%.³⁹

CONCLUSION:

We conclude that frequency of hypotension is high in patients of AMI given SK. Special care should be provided to patients given SK for AMI to prevent hypotension. We recommend that all patients who are given SK must be monitored for blood pressure changes so that any significant hypotension can be detected and treated promptly.

Author's Contribution

MAN: Reviewed the article and assisted in study.
IW: Conducted the study and wrote the article.
HMW: Collected the data and organized tables and figures.

REFERENCES

- 1.Qureshi AE, Jafri NA, Noeman A, Yasmin S, Khalil H. Streptokinase for acute myocardial infarction in the elderly. *J Ayub Med Coll Abbottabad* 2014;26(4):8-535.
2. Ponnada, P.Suresh kumar & Pulicherla, K.K. & Sambasiva Rao, K.R.S.. (2012). Current Status of Production, Clinical Usage and Market Scenario of Streptokinase. *Journal of Pharmacy Research*.
- 3.Büyükkaya E, Karakaş F, Güngör M, Bayaroğulları H, Akçay A, Bilen P, et al. PP-230 Spontaneous Retroperitoneal Hematoma after Treatment with Streptokinase for Acute Myocardial Infarction: A Case Report. *International Journal of Cardiology* 2012;155:S178.
- 4.O'Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.
- 5.American College of Emergency Physicians. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. *J Am Coll Cardiol* 2013;61(4):e78.
- 6.Armstrong PW, Gershlick AH, Goldstein P, Wilcox R, Danays T, Lambert Y, et al. Fibrinolysis or primary PCI in ST-segment elevation myocardial infarction. *N Engl J Med* 2013;368(15):1379.
- 7.Rovelli F. Effectiveness of IV Thrombolytic Treatment in AMI (GISSI). *Lancet* 1986;1:397-402.
- 8.Second International Study of Infarct Survival (ISIS-2) Collaborative Group. Randomised trial of IV SK, oral Aspirin, both or neither among 17,187 cases of suspected AMI. *Lancet* 1988;11:349-60.
- 9.Gemmill JD, Hogg KJ, Douglas JT, Dunn FG, Lowe GD, Rae AP, et al. The incidence and mechanism of hypotension following thrombolytic therapy for acute myocardial infarction with streptokinase-containing agents--lack of relationship to pretreatment streptokinase resistance. *Eur Heart J* 1993;14(6):819-25.
- 10.Lateef F, Anantharaman V. Hypotension in Acute Myocardial Infarction Patients Given Streptokinase. *Singapore Med J* 2000;41(4):172-6.
- 11.Pellanda L, Portal V, Maciel P, Furquim A, Schaan B. Transdisciplinary approach to the follow-up of patients after myocardial infarction. *Clinics* 2008;63(4):489-96.
- 12.Rathore SS, Gersh BJ, Weinfurt KP, Oetgen WJ, Schulman KA, Solomon AJ. The role of reperfusion therapy in paced patients with acute myocardial infarction. *American heart journal* 2001;142(3):516-9.
- 13.White HD, Thygesen K, Alpert JS, Jaffe AS. Clinical implications of the third universal definition of myocardial infarction. *Heart* 2013;heartjnl-2012-302976.
- 14.Bonaca MP, Wiviott SD, Braunwald E, Murphy SA, Ruff CT, Antman EM, et al. American College of Cardiology/American Heart Association/European Society of Cardiology/World Heart Federation Universal Definition of Myocardial Infarction Classification System and the Risk of Cardiovascular Death. *Circulation* 2012;125(4):577-83.
- 15.Steg PG, James SK, Atar D, Badano LP, Lundqvist CB, Borger MA, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC). *European heart journal* 2012;33(20):2569-619.
- 16.Becker RC, Spencer F. Guidelines for the Management of Patients with Acute Myocardial Infarction. *Journal of thrombosis and thrombolysis* 1998;5(1):73-81.
- 17.Rogers WJ, Frederick PD, Stoehr E, Canto JG, Ornato JP, Gibson CM, et al. Trends in presenting characteristics and hospital mortality among patients with ST elevation and non-ST elevation myocardial infarction in the National Registry of Myocardial Infarction from 1990 to 2006. *American heart journal* 2008;156(6):1026-34.
- 18.Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics—2010 update. *Circulation* 2010;121(7):e46-e215.
- 19.Levi F, Lucchini F, Negri E, La Vecchia C. Trends in mortality from cardiovascular and cerebrovascular diseases in Europe and other areas of the world. *Heart* 2002;88(2):119-24.
- 20.Critchley J, Liu J, Zhao D, Wei W, Capewell S. Explaining the increase in coronary heart disease mortality in Beijing between 1984 and 1999. *Circulation* 2004;110(10):1236-44.
- 21.Reddy KS. Cardiovascular disease in non-Western countries. *New England Journal of Medicine* 2004;350(24):2438-40.
- 22.Okrainec K, Banerjee DK, Eisenberg MJ. Coronary artery disease in the developing world. *American heart journal* 2004;148(1):7-15.
- 23.Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. *The lancet* 2004;364(9438):937-52.
- 24.Ezzati M. How can cross-country research on health risks strengthen interventions? Lessons from INTERHEART. *The Lancet* 2004;364(9438):912-4.
- 25.Fujita M, Otsuka KI, Nakae I, Ueda K, Tamaki SI, Kihara Y, et al. Determinants of collateral development in patients with acute myocardial infarction. *Clinical cardiology* 1999;22(9):595-9.
- 26.Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling. *Circulation* 2013;128(4):388-400.
- 27.HAUSENLOY D. Myocardial reperfusion injury [J~. N Engl J Med 2007;357:1121-35.
- 28.Marban E. Myocardial stunning and hibernation. The physiology behind the colloquialisms. *Circulation* 1991;83(2):681-8.
- 29.McGill HC, McMahan CA, Zieske AW, Sloop GD, Walcott JV, Troxclair DA, et al. Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. *Arteriosclerosis, thrombosis, and vascular biology* 2000;20(8):1998-2004.
- 30.Kolodgie F, Virmani R, Burke A, Farb A, Weber D, Kutys R, et al. Pathologic assessment of the vulnerable human coronary plaque. *Heart* 2004;90(12):1385-91.
- 31.Eged M, Viswanathan G, Davis G. Myocardial infarction in young adults. *Postgraduate medical journal* 2005;81(962):741-5.
- 32.Trialists FT. Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. *The lancet* 1994;343(8893):311-22.

33.White HD. Thrombolytic therapy in the elderly. *The Lancet* 2000;356(9247):2028-30.

34.Van de Werf F, Barron H, Armstrong P, Granger C, Berioli S, Barbash G, et al. Incidence and predictors of bleeding events after fibrinolytic therapy with fibrin-specific agents. A comparison of TNK-tPA and rt-PA. *European heart journal* 2001;22(24):2253-61.

35.Steg PG, James SK, Atar D, Badano LP, Blömstrom-Lundqvist C, Borger MA, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. *European heart journal* 2012;33(20):2569-619.

36.Giraldez RR, Nicolau JC, Corbalan R, Gurfinkel EP, Juarez U, Lopez-Sendon J, et al. Enoxaparin is superior to unfractionated heparin in patients with ST elevation myocardial infarction undergoing fibrinolysis regardless of the choice of lytic: an ExTRACT-TIMI 25 analysis. *European heart journal* 2007;28(13):1566-73.

37.Hirulog, Investigators ERo-O-T. Thrombin-specific anticoagulation with bivalirudin versus heparin in patients receiving fibrinolytic therapy for acute myocardial infarction: the HERO-2 randomised trial. *The Lancet* 2001;358(9296):1855-63.

38.Eckel RH, Jakicic JM, Ard JD, De Jesus JM, Miller NH, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Journal of the American College of Cardiology* 2014;63(25 Part B):2960-84.

39.Tatu-Chitoiu G, Teodorescu C, Dan M, Guran M, Capraru P, Istrateescu O, et al. Streptokinase-induced hypotension has no detrimental effect on patients with thrombolytic treatment for acute myocardial infarction. A substudy of the Romanian Study for Accelerated Streptokinase in Acute Myocardial Infarction (ASK-ROMANIA). *Romanian journal of internal medicine=Revue roumaine de medecine interne* 2004;42(3):557-73.